Lunar Regolith Mobility and Excavation Modeling

J.B. Johnson¹, J. Agui², V. Asnani², D.M. Cole³, M.A. Hopkins³, M. Knuth³, A. Kulchitsky¹, L.A. Taylor⁴, A. Wilkinson², K. Zacny⁵

¹U. of Alaska-Fairbanks, ²NASA Glen Research Center, ³USA-ERDC-CRREL, ⁴U. of Tennessee, ⁵Honeybee Robotics

Motivation

 To describe lunar soil mechanical behavior and describe complex machine/ soil behavior we are developing a physics-based discrete element method (DEM) simulation capability

Evolving slip plane failure mechanisms between groups of particles

Discrete Particle System

Forces Acting on Particle k

Importance for Science and Engineering

- Large deformation and progressive failure of granular media are most accurately simulated using DEM
- Design next generation equipment
- Relate Earth tests to lunar conditions
- Create virtual training environments
- Plan future lunar surface operations
- Interpret new lunar soil test data
- Extensible to planetary surface operations

Examples of Large Deformation and Progressive Failure

Rolling Driven Wheel (Conventional)

Inchworm mobility

Approach

- Conduct physical experiments to guide model development and validate simulation accuracy
- Physical experiments
 - Mobility inchworm & traditional
 - Excavation static & percussive
 - Geotech. Properties micromechanical, triaxial & penetrometer
- DEM model development
 - Parallel supercomputer based
 - Maximize algorithm efficiency
 - Incorporate realistic particle shape & contact physics
 - Maximize scalability

How to Develop a Physical DEM

Rover wheel test in layered soil (German Aerospace Center)

Continuum Soil Properties

- 1. Soil geotechnical properties
- 2. Machine/soil interaction model parameters
- 3. Soil layer structure & properties

MER Wheel Test and Simulation

Simulation accuracy: Polyellipsoids

Challenges

- Particle properties affect accuracy
- Increased particle complexity increases computational burden

Simulation accuracy: Spheres

Speed of original DEM code (hours/model seconds)

Triaxial Methods

Vicksburg sand - Polyellipsoids

LEVEL OF DIFFICULTY =

Resilient Modulus Test

$$E_R = \sigma_d / \epsilon$$

- Density = 1696 kg/m³
- Confining Stress,
 σ₃ = 70 kPa
- Deviatoric Stress,
 σ_d = 140 kPa

Resilient Experiment Versus Simulation

Complex Particle Shapes JSC – 1a

LEVEL OF DIFFICULTY =

complex angular shapes

Polyhedra?

Status

- Completed, in-progress, or in-development physical experiments
 - Mobility inching & traditional
 - Excavation static and percussive
 - Geotech. Properties micromechanical, triaxial &
 - penetrometer
- Completed or in-progress DEM model efforts
 - Improved algorithms & architecture of DEM code
 - New DEM code operational for spherical particles on 8 processor shared memory node
 - Simulation of triaxial tests
 - Improved Rover wheel digging simulation
- Planned DEM model efforts
 - Simulation of physical tests
 - Add complex particle shapes/ properties
 - Develop distributed memory capability to increase scalability

Sources of Support

- NASA- Lunar Science Institute
- Alaska Region Supercomputing Center
- USACE-ERDC
- NASA-MFRP
- NASA-LASER
- NASA-MER
- NASA-KSC